$\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}{ }^{2 n-}$: A Novel Selenium-rich Chain-like Heteropolyanion

Christian Robl* and Karin Haake
Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2, Germany

The novel highly selenium-rich heteropolyanion $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}^{2 n-}$ with an unprecedented chain structure has been synthesized in aqueous solution and characterized by X -ray structure analysis of a single crystal of $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

Most heteropolyanions for which the general formula $\left[\mathrm{A}_{x} \mathrm{~B}_{y}\right.$ -$\left.\mathrm{O}_{z}\right]^{n-}$ applies ($\mathrm{A}=\mathrm{Te}, \mathrm{P}, \mathrm{Si}, \mathrm{Se}$ etc. 'hetero-element', $\mathrm{B}=\mathrm{V}$, Nb , Mo etc. 'poly-element') have oligomeric cluster-like structures and possess a rather low A:B ratio. E.g. the well-known Keggin-type anions ${ }^{1}$ such as $\left[\mathrm{PW}_{12} \mathrm{O}_{40}\right]^{3-}$ have a stoichiometric $\mathrm{P}: \mathrm{W}$ ratio of $1: 12$ and the $\mathrm{Te}:$ Mo ratio in anions of the Anderson-Evans type ${ }^{2}$ as $\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right]^{6-}$ is $1: 6$.

Infinite heteropolyanions (chain-like, layer-like or anions with a three-dimensional framework structure) have been observed rarely. \dagger Nevertheless, anions like these would promise interesting applications, in particular, those with anisotropic structural characteristics since heteropoly compounds show a high electron storage capacity and should be capable of providing new electrically conducting materials.

A chain-like molybdosulfate anion was prepared by Fuchs et al. in melts of MoO_{3} and $\mathrm{Rb}_{2} \mathrm{SO}_{4}$ and isolated as $\mathrm{Rb}_{2}\left[\mathrm{SMo}_{3} \mathrm{O}_{13}\right] \cdot{ }^{3}$ This anion is made up by chains of edgesharing MoO_{6} coordination octahedra. One SO_{4} tetrahedron is attached at one time to a group of three MoO_{6} octahedra sharing common corners with them. The $\left[\mathrm{SMO}_{3} \mathrm{O}_{13}\right]_{n}^{2 n-}$ anion and the analogous molybdoselenate anion $\left[\mathrm{SeMo}_{3} \mathrm{O}_{13}\right]_{n}^{2 n-}$ can be obtained conveniently in aqueous solution as well. ${ }^{4}$

[^0]The novel chain-like and highly selenium-rich heteropolyanion $\left[\mathrm{Se}_{2}{ }^{\mathrm{IV}} \mathrm{MoO}_{8}\right]_{n}{ }^{2 n-}$ was synthesized in aqueous solution applying a high excess of $\mathrm{SeO}_{3}{ }^{2-} ; 6 \mathrm{mmol} \mathrm{MoO}_{3}, 90 \mathrm{mmol}$ $\mathrm{H}_{2} \mathrm{SeO}_{3}$ and $60 \mathrm{mmol}_{2} \mathrm{CO}_{3}$ were dissolved in $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and heated to boiling temperature. The clear solution had $\mathrm{pH}=7$ and was allowed to cool slowly. Small colourless crystal plates of $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were formed within one week. $\ddagger \S$
\ddagger Crystal data for $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, monoclinic with $a=932.5(2)$, $b=1233.0(2), c=1058.0(1) \mathrm{pm}, \beta=112.31(1)^{\circ}, V=1125.4 \times$ $10^{6} \mathrm{pm}^{3}$, space group $P 2_{1} / a$ (no. 14). $Z=4, M_{\mathrm{r}}=514.1, D_{\mathrm{c}}=$ $3.03 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=77.5 \mathrm{~cm}^{-1}(\mathrm{Mo}-\mathrm{K} \alpha) .2809$ reflections were collected on a Siemens R3m/V four-circle diffractometer (graphite-monochromated Mo-K α radiation) in the $\omega-2 \theta$ scan mode to $2 \theta_{\text {max }}=54^{\circ} ; T=$ 295 K ; a numerical absorption correction and an empirical extinction correction were applied. 2475 unique reflections ($R_{\text {int }}=0.0129$) of which 1964 were considered observed with $|F|>3 \sigma_{|F|}$. The phase problem was solved by direct methods (SHELXTL-Plus programme package). Hydrogen atoms have not been located. All non-hydrogen atoms were refined anisotropically (146 parameters). $R=0.0424, R_{\mathrm{w}}$ $=0.0303, R_{\mathrm{g}}=0.0268, w=\sigma_{\mid F}^{-2} ;$ maximum features in final difference Fourier synthesis $+0.92 /-0.81 \mathrm{e} \times 10^{-6} \mathrm{pm}^{-3}$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1.
§ Characteristic IR absorption data for $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}: v / \mathrm{cm}^{-1}$ (Nujol) $3384 \mathrm{vs}, 1647 \mathrm{~m}, 929 \mathrm{~s}, 893 \mathrm{vs}, 865 \mathrm{~s}, 859 \mathrm{~s}, 776 \mathrm{~s}, 743 \mathrm{~s}, 592 \mathrm{vs}$, $536 \mathrm{~s}, 424 \mathrm{~m}, 373 \mathrm{~m}, 340 \mathrm{~s}, 282 \mathrm{~s}$.

Fig. 1 Viewed from the [010] direction: $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}{ }^{2 n-}$ anions composed of MoO_{6} coordination octahedra linked by SeO_{3} pseudotetrahedra extend parallel to [100]. K^{+}ions and water molecules are accommodated in the gap between layers of parallel anions. (The unit cell is outlined.) Selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$: $\mathrm{Mo}-\mathrm{O}(1) 203.0(4), \mathrm{Mo}-\mathrm{O}(2) 215.5(4)$, $\mathrm{Mo}-\mathrm{O}$ (3) 200.0(4), Mo-O(4) 168.7(4), Mo-O(5) $217.6(4), \mathrm{Mo}-\mathrm{O}(6) 170.4(4), \mathrm{Se}(1)-\mathrm{O}(1) 174.5(4), \mathrm{Se}(1)-\mathrm{O}(5) 168.3(4), \mathrm{Se}(1)-\mathrm{O}(7) 164.9(5) ; \mathrm{Se}(2)-\mathrm{O}(2) 172.1(4)$, $\mathrm{Se}(2)-\mathrm{O}(3) 175.7(3)$, $\mathrm{Se}(2)-\mathrm{O}(8) 165.8(5) ; \mathrm{O}(1)-\mathrm{Se}(1)-\mathrm{O}(5) 99.75(19), \mathrm{O}(1)-\mathrm{Se}(1)-\mathrm{O}(7) 99.60(21), \mathrm{O}(5)-\mathrm{Se}(1)-\mathrm{O}(7) 105.67(21) ; \mathrm{O}(2)-\mathrm{Se}(2)-\mathrm{O}(3) 98.48(18)$, $\mathrm{O}(2)-\mathrm{Se}(2)-\mathrm{O}(8) 100.44(21), \mathrm{O}(3)-\mathrm{Se}(2)-\mathrm{O}(8) 102.12(19)$.

Fig. 2 A view on (001) shows the corrugation of the $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}^{2 n-}$ chains. (The unit cell is outlined.)
$\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is sparingly soluble in cold water, but soluble at $50^{\circ} \mathrm{C}$. This process is obviously accompanied by disintegration of the $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}^{2 n-}$ anion since single crystals of $\mathrm{K}_{4}\left[\mathrm{Se}_{2} \mathrm{Mo}_{5} \mathrm{O}_{21}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were obtained after slow evaporation of the solvent; the cyclic $\left[\mathrm{Se}_{2} \mathrm{Mo}_{5} \mathrm{O}_{21}\right]^{4-}$ anion is analogous to $\left[\mathrm{S}_{2} \mathrm{Mo}_{5} \mathrm{O}_{21}\right]^{4-} .{ }^{5} \mathrm{On}$ the other hand the seleniumrich $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ can be isolated as a second fraction
from solutions with a moderate $\mathrm{SeO}_{3}{ }^{2-}$ excess prepared to synthesize $\mathrm{K}_{4}\left[\mathrm{Se}_{2} \mathrm{Mo}_{5} \mathrm{O}_{21}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$; the mother liquor is depleted of molybdenum by separation of crystalline $\mathrm{K}_{4}\left[\mathrm{Se}_{2} \mathrm{Mo}_{5} \mathrm{O}_{21}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} .{ }^{4}$

Differential thermal analysis of $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in air showed endothermic processes obviously caused by gradual decomposition at 110,270 and $320^{\circ} \mathrm{C}$ yielding a red residue in
which $\mathrm{K}_{4} \mathrm{MoO}_{5}$ and Se were identified by their X-ray powder diffraction patterns.
The structure of the $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}^{2 n-}$ anion is unprecedented in heteropolyanion chemistry. Distorted MoO_{6} coordination octahedra are linked by two crystallographically independent SeO_{3} pseudo-tetrahedra to yield a sinusoidally corrugated chain running parallel to [100] with the amplitude of corrugation parallel to [010] (Figs. 1 and 2). Only two oxygen atoms of each SeO_{3} group are shared with the MoO_{6} octahedra. As a consequence of the high stoichiometric Se content, the MoO_{6} octahedra are separated from each other. Hence the $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}{ }^{2 n-}$ anion lacks a continuous -O-Mo-O-Mo-Obond sequence as is characteristic of most heteropoly compounds. A further anion with this particular feature is the recently prepared cyclic $\left[\mathrm{Te}_{6} \mathrm{Mo}_{12} \mathrm{O}_{60}\right]^{12-}$ anion. ${ }^{6}$
Pairs of edge-sharing MoO_{6} coordination octahedra linked by bridging MoO_{4} coordination tetrahedra were found in the chain-like isopolyanion $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]_{n}^{2 n-}$ of $\left.\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]\right]^{7}$
Inspite of the one-dimensionally infinite $\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right]_{n}^{2 n-}$ anions the single crystals of $\mathrm{K}_{2}\left[\mathrm{Se}_{2} \mathrm{MoO}_{8}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ do not cleave to fibres. This is obviously caused by the connection mode of the K^{+}coordination polyhedra. They are linked by common edges to form a layer-like arrangement parallel to (001) establishing a sturdy connection between adjacent anions.
The bond orders calculated according to the method of Brown ${ }^{8}$ are 5.9 for $\mathrm{Mo}, 3.8$ for $\mathrm{Se}(1)$ and 3.7 for $\mathrm{Se}(2)$,
respectively. For both unique Se atoms the terminal $\mathrm{Se}-\mathrm{O}$ bond is the shortest [$\mathrm{Se}(1)-\mathrm{O}(7) 164.9, \mathrm{Se}(2)-\mathrm{O}(8) 165.8 \mathrm{pm}]$. Application of a riding model bond ${ }^{9}$ length correction yields 166.2 [$\mathrm{Se}(1)-\mathrm{O}(7)]$ and $167.1 \mathrm{pm}[\mathrm{Se}(2)-\mathrm{O}(8)]$. The other $\mathrm{Se}-\mathrm{O}$ bond lengths as well as the Mo-O bonds are not significantly affected by artificial foreshortening due to thermal vibration.

Financial support by Fonds der Chemischen Industrie is gratefully acknowledged.

Received, 14th August 1992; Com. 2/04414E

References

1 J. F. Keggin, Nature, 1933, 131, 908.
2 H. T. Evans, J. Am. Chem. Soc., 1948, 70, 1291.
3 J. Fuchs, H.-U. Kreusler and A. Förster, Z. Naturforsch., B Chem. Sci., 1979, 34, 1683.
4 C. Robl and K. Haake, unpublished results.
5 K. Y. Matsumoto, M. Kato and Y. Sasaki, Bull. Chem. Soc. Jpn., 1976, 49, 106.
6 C. Robl and M. Frost, J. Chem. Soc., Chem. Commun., 1992, 248.
7 I. Knöpnadel, H. Hartl, W.-D. Hunnius and J. Fuchs, Angew. Chem., 1974, 86, 894.
8 I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B, 1976, 32, 1957.

9 W. R. Basing and H. A. Levy, Acta Crystallogr., 1964, 17, 142.

[^0]: \dagger Alumosilicates are not regarded as heteropoly compounds in this consideration.

